1 Question 1: What does tokenization entail, and why is it critical for LLMs? (标记化包含什么?为什么它对 LLM 至关重要?)

Tokenization involves breaking down text into smaller units, or tokens, such as words, subwords, or characters. For example, "artificial" might be split into "art," "ific," and "ial." This process is vital because LLMs process numerical representations of tokens, not raw text. Tokenization enables models to handle diverse languages, manage rare or unknown words, and optimize vocabulary size, enhancing computational efficiency and model performance.
标记化涉及将文本分解成更小的单元或标记,例如单词、子单词或字符。例如,“artificial” 可以拆分成“art”、“ific” 和 “ial”。此过程至关重要,因为 LLM 处理的是标记的数字表示,而不是原始文本。标记化使模型能够处理多种语言、管理稀有或未知词汇,并优化词汇量,从而提高计算效率和模型性能

2 Question 2: How does the attention mechanism function in transformer models? (注意力机制在 Transformer 模型中如何发挥作用?)

The attention mechanism allows LLMs to weigh the importance of different tokens in a se quence when generating or interpreting text. It computes similarity scores between query, key, and value vectors, using operations like dot products, to focus on relevant tokens. For instance, in "The cat chased the mouse," attention helps the model link "mouse" to "chased." This mechanism improves context understanding, making transformers highly effective for NLP tasks.
注意力机制允许 LLM 在生成或解释文本时权衡序列中不同 token 的重要性。它使用点积等运算来计算查询、键和值向量之间的相似度得分,以聚焦相关的 token。例如,在“猫追老鼠”中,注意力机制帮助模型将“老鼠”与“追”联系起来。这种机制提升了语境理解能力,使 Transformer 在自然语言处理 (NLP) 任务中非常高效。

3 Question 3: What is the context window in LLMs, and why does it matter? (LLM 中的上下文窗口是什么,它为什么重要?)

The context window refers to the number of tokens an LLM can process at once, defining its "memory" for understanding or generating text. A larger window, like 32,000 tokens, allows the model to consider more context, improving coherence in tasks like summariza tion. However, it increases computational costs. Balancing window size with efficiency is crucial for practical LLM deployment.
上下文窗口指的是 LLM 一次可以处理的标记数量,定义了其用于理解或生成文本的“内存”。更大的窗口(例如 32,000 个标记)允许模型考虑更多上下文,从而提高摘要等任务的连贯性。然而,这会增加计算成本。在 LLM 的实际部署中,平衡窗口大小和效率至关重要。

4 Question 4: What distinguishes LoRA from QLoRA in fine tuning LLMs?(在微调 LLM 方面,LoRA 与 QLoRA 有何区别?)

LoRA (Low-Rank Adaptation) is a fine-tuning method that adds low-rank matrices to a models layers, enabling efficient adaptation with minimal memory overhead. QLoRA extends this by applying quantization (e.g., 4-bit precision) to further reduce memory usage while maintaining accuracy. For example, QLoRA can fine-tune a 70B-parameter model on a single GPU, making it ideal for resource-constrained environments.
LoRA(低秩自适应)是一种微调方法,它将低秩矩阵添加到模型层,从而以最小的内存开销实现高效的自适应。QLoRA 通过应用量化(例如 4 位精度)扩展了 LoRA 的这一特性,在保持准确率的同时进一步降低内存占用。例如,QLoRA 可以在单个 GPU 上微调一个 70B 参数的模型,使其成为资源受限环境的理想选择。

5 Question 5: How does beam search improve text generation compared to greedy decoding? (与贪婪解码相比,集束搜索如何改进文本生成?)

Beam search explores multiple word sequences during text generation, keeping the top k candidates (beams) at each step, unlike greedy decoding, which selects only the most probable word. This approach, with k = 5, for instance, ensures more coherent outputs by balancing probability and diversity, especially in tasks like machine translation or dialogue generation.
集束搜索在文本生成过程中探索多个单词序列,并在每一步保留前 k 个候选词(集束),这与贪婪解码不同,后者只选择概率最大的单词。例如,当 k = 5 时,这种方法通过平衡概率和多样性来确保更一致的输出,尤其是在机器翻译或对话生成等任务中。

6 Question 6: What role does temperature play in controlling LLM output? (温度在控制 LLM 输出中起什么作用?)

Temperature is a hyperparameter that adjusts the randomness of token selection in text generation. A low temperature (e.g., 0.3) favors high-probability tokens, producing pre dictable outputs. A high temperature (e.g., 1.5) increases diversity by flattening the probability distribution. Setting temperature to 0.8 often balances creativity and coher ence for tasks like storytelling.
温度是一个超参数,用于调整文本生成中标记选择的随机性。较低的温度(例如 0.3)有利于高概率标记,从而产生可预测的输出。较高的温度(例如 1.5)通过平坦化概率分布来增加多样性。将温度设置为 0.8 通常可以在诸如讲故事之类的任务中平衡创造力和连贯性。

7 Question 7: What is masked language modeling, and how does it aid pretraining? (什么是掩蔽语言建模,它如何帮助预训练?)

Masked language modeling (MLM) involves hiding random tokens in a sequence and training the model to predict them based on context. Used in models like BERT, MLM fosters bidirectional understanding of language, enabling the model to grasp semantic
掩码语言模型 (MLM) 是指将随机标记隐藏在序列中,并训练模型根据上下文进行预测。在 BERT 等模型中,MLM 可以促进对语言的双向理解,使模型能够掌握语义。

relationships. This pretraining approach equips LLMs for tasks like sentiment analysis or question answering.
关系。这种预训练方法使 LLM 能够执行情绪分析或问答等任务。

8 Question 8: What are sequence-to-sequence models, and where are they applied? (什么是序列到序列模型,它们应用在哪里?)

Sequence-to-sequence (Seq2Seq) models transform an input sequence into an output se quence, often of different lengths. They consist of an encoder to process the input and a decoder to generate the output. Applications include machine translation (e.g., English to Spanish), text summarization, and chatbots, where variable-length inputs and outputs are common.
序列到序列 (Seq2Seq) 模型将输入序列转换为输出序列,输出序列的长度通常不一。它们由一个编码器(用于处理输入)和一个解码器(用于生成输出)组成。应用包括机器翻译(例如,英语到西班牙语)、文本摘要和聊天机器人,这些应用中的输入和输出长度可变。

9 Question 9: How do autoregressive and masked models differ in LLM training? (自回归模型和掩蔽模型在 LLM 训练中有何不同?)

Autoregressive models, like GPT, predict tokens sequentially based on prior tokens, ex celling in generative tasks such as text completion. Masked models, like BERT, predict masked tokens using bidirectional context, making them ideal for understanding tasks like classification. Their training objectives shape their strengths in generation versus comprehension.
自回归模型(例如 GPT)根据先前的 token 按顺序预测 token,在文本补全等生成任务中表现出色。掩蔽模型(例如 BERT)使用双向上下文预测掩蔽 token,使其成为理解分类等任务的理想选择。它们的训练目标决定了它们在生成和理解方面的优势。

10 Question 10: What are embeddings, and how are they ini tialized in LLMs? (什么是嵌入,以及如何在 LLM 中初始化它们?)

Embeddings are dense vectors that represent tokens in a continuous space, capturing semantic and syntactic properties. They are often initialized randomly or with pretrained models like GloVe, then fine-tuned during training. For example, the embedding for "dog" might evolve to reflect its context in pet-related tasks, enhancing model accuracy.
嵌入是密集向量,用于表示连续空间中的标记,捕捉语义和句法属性。它们通常随机初始化,或使用 GloVe 等预训练模型进行初始化,然后在训练过程中进行微调。例如,“狗”的嵌入可能会演变以反映其在宠物相关任务中的语境,从而提高模型准确率。

11 Question 11: What is next sentence prediction, and how does it enhance LLMs? (什么是下一句预测,它如何增强 LLM?)

Next sentence prediction (NSP) trains models to determine if two sentences are consec utive or unrelated. During pretraining, models like BERT learn to classify 50% posi tive (sequential) and 50% negative (random) sentence pairs. NSP improves coherence in tasks like dialogue systems or document summarization by understanding sentence relationships.
下一句预测 (NSP) 训练模型判断两句句子是连续的还是不相关的。在预训练阶段,像 BERT 这样的模型会学习对 50% 的正向(连续)句子对和 50% 的负向(随机)句子对进行分类。NSP 通过理解句子关系,提升对话系统或文档摘要等任务的连贯性。

12 Question 12: How do top-k and top-p sampling differ in text generation? (在文本生成中,top-k 和 top-p 采样有何不同?)

Top-k sampling selects the k most probable tokens (e.g., k = 20) for random sampling, ensuring controlled diversity. Top-p (nucleus) sampling chooses tokens whose cumulative probability exceeds a threshold p (e.g., 0.95), adapting to context. Top-p offers more flexibility, producing varied yet coherent outputs in creative writing.
Top-k 抽样选择 k 个最可能的 token(例如, k = 20)进行随机抽样,以确保可控的多样性。Top-p(核心)抽样选择累积概率超过阈值 p (例如,0.95)的 token,并根据上下文进行调整。Top-p 抽样提供了更大的灵活性,可以在创意写作中产生多样而连贯的输出。

13 Question 13: Why is prompt engineering crucial for LLM performance? (为什么及时工程对于 LLM 表现至关重要?)

Prompt engineering involves designing inputs to elicit desired LLM responses. A clear prompt, like "Summarize this article in 100 words," improves output relevance compared to vague instructions. Its especially effective in zero-shot or few-shot settings, enabling LLMs to tackle tasks like translation or classification without extensive fine-tuning.
提示工程涉及设计输入以引出所需的 LLM 响应。清晰的提示,例如“用 100 个字概括这篇文章”,比模糊的指令更能提高输出的相关性。它在零样本或少样本设置中尤其有效,使 LLM 无需进行大量微调即可处理翻译或分类等任务。

14 Question 14: How can LLMs avoid catastrophic forgetting during fine-tuning? (LLM 如何避免在微调过程中发生灾难性遗忘?)

Catastrophic forgetting occurs when fine-tuning erases prior knowledge. Mitigation strate gies include:
灾难性遗忘是指微调抹去先前知识的情况。缓解策略包括:

    • Rehearsal: Mixing old and new data during training.
    • 排练:在训练期间混合新旧数据。
    
    • Elastic Weight Consolidation: Prioritizing critical weights to preserve knowledge. • Modular Architectures: Adding task-specific modules to avoid overwriting. These methods ensure LLMs retain versatility across tasks.
    • 弹性权重合并:优先考虑关键权重以保存知识。• 模块化架构:添加特定于任务的模块以避免覆盖。这些方法确保 LLM 在不同任务之间保持多功能性。

15 Question 15: What is model distillation, and how does it benefit LLMs? (什么是模型蒸馏,它对 LLM 有何益处?)

Model distillation trains a smaller "student" model to mimic a larger "teacher" models outputs, using soft probabilities rather than hard labels. This reduces memory and com putational requirements, enabling deployment on devices like smartphones while retaining near-teacher performance, ideal for real-time applications.
模型蒸馏使用软概率而非硬标签,训练一个较小的“学生”模型来模拟一个较大的“老师”模型的输出。这降低了内存和计算需求,使其能够在智能手机等设备上部署,同时保持接近“老师”模型的性能,非常适合实时应用。

16 Question 16: How do LLMs manage out-of-vocabulary (OOV) words? (LLM 如何管理词汇表外(OOV)的单词?)

LLMs use subword tokenization, like Byte-Pair Encoding (BPE), to break OOV words into known subword units. For instance, "cryptocurrency" might split into "crypto" and "currency." This approach allows LLMs to process rare or new words, ensuring robust language understanding and generation.
LLM 使用子词标记化,例如字节对编码 (BPE),将 OOV 词分解为已知的子词单元。例如,“cryptocurrency” 可能拆分为“crypto”和“currency”。这种方法使 LLM 能够处理稀有词或新词,从而确保强大的语言理解和生成能力。

17 Question 17: How do transformers improve on traditional Seq2Seq models? (Transformer 如何改进传统的 Seq2Seq 模型?)

Transformers overcome Seq2Seq limitations by:
Transformer 通过以下方式克服 Seq2Seq 的局限性:

• Parallel Processing: Self-attention enables simultaneous token processing, unlike sequential RNNs.
• 并行处理:与顺序 RNN 不同,自注意力机制能够同时进行标记处理。

• Long-Range Dependencies: Attention captures distant token relationships. • Positional Encodings: These preserve sequence order.
• 长距离依赖关系:注意力机制捕捉远距离的标记关系。• 位置编码:这些编码保留了序列顺序。

These features enhance scalability and performance in tasks like translation.
这些功能增强了翻译等任务的可扩展性和性能。

18 Question 18: What is overfitting, and how can it be miti gated in LLMs? (什么是过度拟合,以及如何在 LLM 中缓解过度拟合?)

Overfitting occurs when a model memorizes training data, failing to generalize. Mitigation includes:
当模型记住训练数据而无法泛化时,就会发生过拟合。缓解措施包括:

• Regularization: L1/L2 penalties simplify models.
• 正则化:L1/L2 惩罚简化模型。

• Dropout: Randomly disables neurons during training.
• Dropout:在训练期间随机禁用神经元。

• Early Stopping: Halts training when validation performance plateaus. These techniques ensure robust generalization to unseen data.
• 提前停止:当验证集性能达到稳定水平时停止训练。这些技术确保模型对未知数据具有鲁棒的泛化能力。

#19 Question 19: What are generative versus discriminative mod els in NLP? (NLP 中的生成模型与判别模型是什么?)

Generative models, like GPT, model joint probabilities to create new data, such as text or images. Discriminative models, like BERT for classification, model conditional probabil ities to distinguish classes, e.g., sentiment analysis. Generative models excel in creation, while discriminative models focus on accurate classification.
生成模型(例如 GPT)通过对联合概率进行建模来创建新数据,例如文本或图像。判别模型(例如用于分类的 BERT)通过对条件概率进行建模来区分类别,例如用于情绪分析。生成模型擅长创造,而判别模型则专注于精确分类。

20 Question 20: How does GPT-4 differ from GPT-3 in features and applications?

20 问题 20:GPT-4 在特性和应用方面与 GPT-3 有何不同?

GPT-4 surpasses GPT-3 with:
GPT-4 超越 GPT-3 的地方在于:

• Multimodal Input: Processes text and images.
• 多模式输入:处理文本和图像。

• Larger Context: Handles up to 25,000 tokens versus GPT-3s 4,096. • Enhanced Accuracy: Reduces factual errors through better fine-tuning. These improvements expand its use in visual question answering and complex dialogues.
• 更大的语境:最多可处理 25,000 个词条,而 GPT-3 则为 4,096 个。• 更高的准确率:通过更精准的微调减少事实错误。这些改进扩展了其在视觉问答和复杂对话中的应用。

21 Question 21: What are positional encodings, and why are they used?

21 问题 21:什么是位置编码,为什么使用它们?

Positional encodings add sequence order information to transformer inputs, as self-attention lacks inherent order awareness. Using sinusoidal functions or learned vectors, they ensure tokens like "king" and "crown" are interpreted correctly based on position, critical for tasks like translation.
位置编码为 Transformer 输入添加了序列顺序信息,因为自注意力机制缺乏固有的顺序感知能力。使用正弦函数或学习向量,它们可以确保像“国王”和“王冠”这样的词条能够根据位置正确解读,这对于翻译等任务至关重要。

22 Question 22: What is multi-head attention, and how does it enhance LLMs?

22 问题 22:什么是多头注意力,它如何增强 LLM?

Multi-head attention splits queries, keys, and values into multiple subspaces, allowing the model to focus on different aspects of the input simultaneously. For example, in a sentence, one head might focus on syntax, another on semantics. This improves the models ability to capture complex patterns.
多头注意力机制将查询、键和值拆分到多个子空间,使模型能够同时关注输入的不同方面。例如,在一个句子中,一个头可能关注语法,另一个头关注语义。这提高了模型捕捉复杂模式的能力。

23 Question 23: How is the softmax function applied in atten tion mechanisms?

23 问题 23:softmax 函数在注意力机制中是如何应用的?

The softmax function normalizes attention scores into a probability distribution: softmax(xi) = ex
softmax 函数将注意力得分归一化为概率分布:softmax(x) = exi

In attention, it converts raw similarity scores (from query-key dot products) into weights, emphasizing relevant tokens. This ensures the model focuses on contextually important parts of the input.
在注意力机制中,它将原始相似度得分(来自查询-关键字点积)转换为权重,从而强调相关的标记。这确保模型能够关注输入中上下文重要的部分。

24 Question 24: How does the dot product contribute to self attention?

24 问题24:点积对自注意力有何贡献?

In self-attention, the dot product between query (Q) and key (K) vectors computes
在自注意力机制中,查询( Q )向量和键( K )向量之间的点积计算

similarity scores:   相似度得分:

Score =Q · K √dk
分数=Q·K√dk

High scores indicate relevant tokens. While efficient, its quadratic complexity (O(n2)) for long sequences has spurred research into sparse attention alternatives.
高分表示相关标记。虽然高效,但其长序列的二次复杂度( O ( n² ) )促使人们研究稀疏注意力替代方案。

25 Question 25: Why is cross-entropy loss used in language modeling?

25 问题25:为什么在语言建模中使用交叉熵损失?

Cross-entropy loss measures the divergence between predicted and true token probabili
交叉熵损失衡量预测的 token 概率与真实的 token 概率之间的差异

ties:   联系:

L = −∑yi log(ˆyi) 6
L = − ∑ y i log(ˆ y ) 6

It penalizes incorrect predictions, encouraging accurate token selection. In language mod eling, it ensures the model assigns high probabilities to correct next tokens, optimizing performance.
它惩罚错误的预测,鼓励准确的标记选择。在语言建模中,它确保模型分配高概率来纠正下一个标记,从而优化性能。

26 Question 26: How are gradients computed for embeddings in LLMs?

26 问题 26:如何计算 LLM 中的嵌入梯度?

Gradients for embeddings are computed using the chain rule during backpropagation: ∂E =∂L
嵌入的梯度在反向传播过程中使用链式法则计算: ∂E = ∂L

∂L

∂logits ·∂logits ∂E
∂ 对数 · ∂ 对数 ∂E

These gradients adjust embedding vectors to minimize loss, refining their semantic rep resentations for better task performance.
这些梯度调整嵌入向量以最小化损失,改进其语义表示以获得更好的任务性能。

27 Question 27: What is the Jacobian matrixs role in trans former backpropagation?

27 问题 27:雅可比矩阵在反向传播中起什么作用?

The Jacobian matrix captures partial derivatives of outputs with respect to inputs. In transformers, it helps compute gradients for multidimensional outputs, ensuring accu rate updates to weights and embeddings during backpropagation, critical for optimizing complex models.
雅可比矩阵捕获输出关于输入的偏导数。在 Transformer 中,它有助于计算多维输出的梯度,确保在反向传播过程中准确更新权重和嵌入,这对于优化复杂模型至关重要。

28 Question 28: How do eigenvalues and eigenvectors relate to dimensionality reduction?

28 问题28:特征值和特征向量与降维有何关系?

Eigenvectors define principal directions in data, and eigenvalues indicate their variance. In techniques like PCA, selecting eigenvectors with high eigenvalues reduces dimension ality while retaining most variance, enabling efficient data representation for LLMs input processing.
特征向量定义数据中的主方向,特征值指示其方差。在诸如 PCA 之类的技术中,选择具有高特征值的特征向量可以降低维度,同时保留大部分方差,从而为 LLM 的输入处理提供高效的数据表示。

29 Question 29: What is KL divergence, and how is it used in LLMs?

29 问题 29:什么是 KL 散度,它在 LLM 中如何使用?

KL divergence quantifies the difference between two probability distributions: DKL(P||Q) = ∑P(x)log P(x)
KL 散度量化了两个概率分布之间的差异: D KL ( P||Q ) = ∑ P ( x )log P ( x )

Q(x)
Q ( x )

In LLMs, it evaluates how closely model predictions match true distributions, guiding fine-tuning to improve output quality and alignment with target data.
在 LLM 中,它评估模型预测与真实分布的匹配程度,指导微调以提高输出质量并与目标数据保持一致。

30 Question 30: What is the derivative of the ReLU function, and why is it significant?

30 问题 30:ReLU 函数的导数是什么,为什么它很重要?

The ReLU function, f(x) = max(0, x), has a derivative:
ReLU 函数 f ( x ) = max(0 , x ) 具有导数:

{

f′(x) =
f ( x )=

1 if x > 0 0 otherwise
如果为 1,则 x > 为 0,否则为 0

Its sparsity and non-linearity prevent vanishing gradients, making ReLU computationally efficient and widely used in LLMs for robust training.
它的稀疏性和非线性可防止梯度消失,使得 ReLU 计算效率高,并广泛用于 LLM 的稳健训练。

31 Question 31: How does the chain rule apply to gradient descent in LLMs?

31 问题 31:链式法则如何应用于 LLM 中的梯度下降?

The chain rule computes derivatives of composite functions:
链式法则计算复合函数的导数:

d

dxf(g(x)) = f′(g(x)) · g′(x)
dx f ( g ( x ) ) = f ( g ( x ) ) · g ( x )

In gradient descent, it enables backpropagation to calculate gradients layer by layer, updating parameters to minimize loss efficiently across deep LLM architectures.
在梯度下降中,它支持反向传播逐层计算梯度,更新参数以有效地最小化深度 LLM 架构中的损失。

32 Question 32: How are attention scores calculated in trans formers?

32 问题 32:transformers 中的注意力分数是如何计算的?

Attention scores are computed as:
注意力分数的计算方法如下:

Attention(Q, K, V ) = softmax
注意力机制( Q,K,V )=softmax

(QKT √dk

)

V

The scaled dot product measures token relevance, and softmax normalizes scores to focus on key tokens, enhancing context-aware generation in tasks like summarization.
缩放点积测量标记相关性,softmax 对分数进行标准化以关注关键标记,从而增强摘要等任务中的上下文感知生成。

33 Question 33: How does Gemini optimize multimodal LLM training?

33 问题 33:Gemini 如何优化多模态 LLM 培训?

Gemini enhances efficiency via:
Gemini 通过以下方式提高效率:

• Unified Architecture: Combines text and image processing for parameter efficiency. • Advanced Attention: Improves cross-modal learning stability.
• 统一架构:结合文本和图像处理以提高参数效率。• 高级注意力机制:提高跨模态学习的稳定性。

• Data Efficiency: Uses self-supervised techniques to reduce labeled data needs. These features make Gemini more stable and scalable than models like GPT-4.
• 数据效率:使用自监督技术来减少标记数据需求。这些特性使 Gemini 比 GPT-4 等模型更稳定、更具可扩展性。

34 Question 34: What types of foundation models exist?

34 问题34: 有哪些类型的基础模型?

Foundation models include:
基础模型包括:

• Language Models: BERT, GPT-4 for text tasks.
• 语言模型:BERT、GPT-4 用于文本任务。

• Vision Models: ResNet for image classification.
• 视觉模型:用于图像分类的 ResNet。

• Generative Models: DALL-E for content creation.
• 生成模型:用于内容创作的 DALL-E。

• Multimodal Models: CLIP for text-image tasks.
• 多模式模型:用于文本图像任务的 CLIP。

These models leverage broad pretraining for diverse applications.
这些模型利用广泛的预训练来适应不同的应用。

35 Question 35: How does PEFT mitigate catastrophic forget ting? (PEFT 如何减轻灾难性遗忘?)

Parameter-Efficient Fine-Tuning (PEFT) updates only a small subset of parameters, freezing the rest to preserve pretrained knowledge. Techniques like LoRA ensure LLMs adapt to new tasks without losing core capabilities, maintaining performance across do mains.
参数高效微调 (PEFT) 仅更新一小部分参数,冻结其余参数以保留预训练知识。LoRA 等技术可确保 LLM 在不丢失核心功能的情况下适应新任务,从而保持跨领域的性能。

36 Question 36: What are the steps in Retrieval-Augmented Generation (RAG)? (检索增强生成(RAG)的步骤是什么?)

RAG involves:   RAG 涉及:

   1. Retrieval: Fetching relevant documents using query embeddings. 
   1. 检索:使用查询嵌入获取相关文档。

   2. Ranking: Sorting documents by relevance.
   2. 排名:按相关性对文档进行排序。

   3. Generation: Using retrieved context to generate accurate responses. RAG enhances factual accuracy in tasks like question answering.
   3. 生成:利用检索到的上下文生成准确的响应。RAG 可以提高问答等任务中的事实准确性。

37 Question 37: How does Mixture of Experts (MoE) enhance LLM scalability? (专家混合(MoE)如何增强 LLM 的可扩展性?)

MoE uses a gating function to activate specific expert sub-networks per input, reducing computational load. For example, only 10% of a models parameters might be used per query, enabling billion-parameter models to operate efficiently while maintaining high performance.
MoE 使用门控函数来激活每个输入的特定专家子网络,从而减少计算负载。例如,每个查询可能仅使用 10% 的模型参数,从而使数十亿参数的模型能够高效运行,同时保持高性能。

38 Question 38: What is Chain-of-Thought (CoT) prompting, and how does it aid reasoning? (什么是思路链 (CoT) 提示,它如何帮助推理?)

CoT prompting guides LLMs to solve problems step-by-step, mimicking human reasoning. For example, in math problems, it breaks down calculations into logical steps, improving
CoT 提示引导 LLM 逐步解决问题,模仿人类推理。例如,在数学问题中,它将计算分解成逻辑步骤,从而提高

accuracy and interpretability in complex tasks like logical inference or multi-step queries.
在逻辑推理或多步骤查询等复杂任务中的准确性和可解释性。

39 Question 39: How do discriminative and generative AI dif fer? (判别性人工智能和生成性人工智能有何不)

Discriminative AI, like sentiment classifiers, predicts labels based on input features, mod eling conditional probabilities. Generative AI, like GPT, creates new data by modeling joint probabilities, suitable for tasks like text or image generation, offering creative flexi bility.
判别式人工智能(例如情绪分类器)根据输入特征预测标签,并对条件概率进行建模。生成式人工智能(例如 GPT)通过对联合概率进行建模来创建新数据,适用于文本或图像生成等任务,从而提供创造性的灵活性。

40 Question 40: How does knowledge graph integration im prove LLMs? (知识图谱集成如何提高 LLM?)

Knowledge graphs provide structured, factual data, enhancing LLMs by: • Reducing Hallucinations: Verifying facts against the graph.
知识图谱提供结构化的事实数据,通过以下方式增强 LLM:• 减少幻觉:根据图表验证事实。

• Improving Reasoning: Leveraging entity relationships.
• 改进推理:利用实体关系。

• Enhancing Context: Offering structured context for better responses. This is valuable for question answering and entity recognition.
• 增强语境:提供结构化语境以获得更好的响应。这对于问答和实体识别非常有价值。

41 Question 41: What is zero-shot learning, and how do LLMs implement it? (什么是零样本学习,LLM 如何实现它?)

Zero-shot learning allows LLMs to perform untrained tasks using general knowledge from pretraining. For example, prompted with "Classify this review as positive or negative," an LLM can infer sentiment without task-specific data, showcasing its versatility.
零样本学习允许 LLM 使用预训练中的常识来执行未经训练的任务。例如,当被提示“将此评论归类为正面或负面”时,LLM 无需特定任务数据即可推断情绪,展现了其多功能性。

42 Question 42: How does Adaptive Softmax optimize LLMs? (Adaptive Softmax 如何优化 LLM?)

Adaptive Softmax groups words by frequency, reducing computations for rare words. This lowers the cost of handling large vocabularies, speeding up training and inference while maintaining accuracy, especially in resource-limited settings.
自适应 Softmax 算法按词频对单词进行分组,从而减少罕见词的计算量。这降低了处理海量词汇的成本,加快了训练和推理速度,同时保持了准确性,尤其是在资源有限的环境下。

43 Question 43: How do transformers address the vanishing gradient problem? (Transformer 如何解决梯度消失问题?)

Transformers mitigate vanishing gradients via:
Transformer 通过以下方式缓解梯度消失:

• Self-Attention: Avoiding sequential dependencies.
• 自我注意:避免顺序依赖。

• Residual Connections: Allowing direct gradient flow.
• 残余连接:允许直接梯度流。

• Layer Normalization: Stabilizing updates.
• 层规范化:稳定更新。

These ensure effective training of deep models, unlike RNNs.
与 RNN 不同,这些可确保深度模型的有效训练。

44 Question 44: What is few-shot learning, and what are its benefits? (什么是小样本学习,它有什么好处?)

Few-shot learning enables LLMs to perform tasks with minimal examples, leveraging pretrained knowledge. Benefits include reduced data needs, faster adaptation, and cost efficiency, making it ideal for niche tasks like specialized text classification.
少样本学习使 LLM 能够利用预训练知识,以最少的样本执行任务。其优势包括减少数据需求、加快适应速度和提高成本效益,使其成为专业文本分类等小众任务的理想选择。

45 Question 45: How would you fix an LLM generating biased or incorrect outputs? (如何修复 LLM 产生的有偏差或不正确的输出?)

To address biased or incorrect outputs:
为了解决有偏见或不正确的输出:

1. Analyze Patterns: Identify bias sources in data or prompts.
1. 分析模式:识别数据或提示中的偏见来源。

2. Enhance Data: Use balanced datasets and debiasing techniques. 3. Fine-Tune: Retrain with curated data or adversarial methods.
2. 增强数据:使用平衡数据集和去偏差技术。3. 微调:使用精选数据或对抗性方法进行重新训练。

These steps improve fairness and accuracy.
这些步骤提高了公平性和准确性。

46 Question 46: How do encoders and decoders differ in trans formers? (编码器和解码器在变压器方面有何不同?)

Encoders process input sequences into abstract representations, capturing context. De coders generate outputs, using encoder outputs and prior tokens. In translation, the encoder understands the source, and the decoder produces the target language, enabling effective Seq2Seq tasks.
编码器将输入序列处理成抽象表示,从而捕捉上下文。解码器使用编码器输出和先前的标记生成输出。在翻译过程中,编码器理解源语言,解码器生成目标语言,从而实现高效的 Seq2Seq 任务。

47 Question 47: How do LLMs differ from traditional statistical language models? (LLM 与传统统计语言模型有何不同?)

LLMs use transformer architectures, massive datasets, and unsupervised pretraining, unlike statistical models (e.g., N-grams) that rely on simpler, supervised methods. LLMs handle long-range dependencies, contextual embeddings, and diverse tasks, but require significant computational resources.
与依赖更简单的监督方法的统计模型(例如 N-gram)不同,LLM 使用 Transformer 架构、海量数据集和无监督预训练。LLM 可以处理长距离依赖关系、上下文嵌入和各种任务,但需要大量的计算资源。

48 Question 48: What is a hyperparameter, and why is it im portant? (什么是超参数,为什么它很重要?)

Hyperparameters are preset values, like learning rate or batch size, that control model training. They influence convergence and performance; for example, a high learning rate may cause instability. Tuning hyperparameters optimizes LLM efficiency and accuracy.
超参数是控制模型训练的预设值,例如学习率或批次大小。它们会影响收敛性和性能;例如,较高的学习率可能会导致不稳定。调整超参数可以优化 LLM 的效率和准确性。

49 Question 49: What defines a Large Language Model (LLM)? (大型语言模型 (LLM) 的定义是什么?)

LLMs are AI systems trained on vast text corpora to understand and generate human-like language. With billions of parameters, they excel in tasks like translation, summarization, and question answering, leveraging contextual learning for broad applicability.
LLM 是经过海量文本语料库训练的 AI 系统,能够理解并生成类似人类的语言。它们拥有数十亿个参数,在翻译、摘要和问答等任务中表现出色,并利用上下文学习实现广泛的应用。

50 Question 50: What challenges do LLMs face in deployment? (LLM 在部署中面临哪些挑战?)

LLM challenges include(LLM 挑战包括):

• Resource Intensity: High computational demands.
• 资源强度:高计算需求。

• Bias: Risk of perpetuating training data biases.
• 偏见:延续训练数据偏见的风险。

• Interpretability: Complex models are hard to explain.
• 可解释性:复杂的模型很难解释。

• Privacy: Potential data security concerns.
• 隐私:潜在的数据安全问题。

Addressing these ensures ethical and effective LLM use.
解决这些问题可确保 LLM 的使用合乎道德且有效。

Conclusion 结论

This guide equips you with in-depth knowledge of LLMs, from core concepts to advanced techniques. Share it with your LinkedIn community to inspire and educate aspiring AI professionals. For more AI/ML insights, connect with me at Your LinkedIn Profile.
本指南将帮助您深入了解法学硕士 (LLM) 的知识,涵盖核心概念到高级技巧。欢迎在您的领英 (LinkedIn) 社区分享,以激励和教育有抱负的 AI 专业人士。如需了解更多 AI/ML 见解,请在您的领英个人资料页面与我联系。

__END__